

High-Temperature
Superconductors (HTSs) as
Electromagnetic Deployment
and Support Structures in
Spacecraft

PI: Prof. David W. Miller Gwendolyn V. Gettliffe MIT Space Systems Lab

NIAC Spring Symposium March 28, 2012

MIT Space Systems Laboratory

From Vision to Orbit: Designing Systems for Space

Mission Statement: Using comprehensive mission analysis, identify key enabling technologies and mature them through terrestrial and on-orbit testing.

On-Orbit Validation

Space

Interferometric imaging

MODE experiment (Shuttle)

Orbit/constellation design

Electromagnetic propulsion

MACE experiment (Shuttle & ISS)

Active mirror design

Student-built spacecraft

SPHERES facility (ISS)

Electromagnetic Formation Flight

(EMFF)

- Subject of 2002 NIAC study
- **Basic Concept**
 - Provide actuation in relative degrees of freedom for formation flight systems using electromagnetic forces/torques and reaction wheels

- Station-keeping for distributed satellite systems
- Replacement of consumables (thrusters)
- Eliminate thruster plumes
- Enable high ΔV formation flying missions
- **Implementation**
 - Create a steerable electromagnetic dipole using three orthogonal electromagnetic coils made of superconducting wire.
 - De-couple torques by using reaction wheels
 - Demonstrated in 3DOF in lab, using cryogenic heat pipe
 - **Next step: ISS demonstration (RINGS)**

Background

- Many space structures have performance benefits at larger sizes
- However, spacecraft size is limited by a number of factors, including but not limited to:
 - Dimensions of launch vehicle fairing
 - Max takeoff weight of launch vehicle
 - Cost budget available

 Larger primary telescope mirrors can observe objects farther away

• Larger solar sails provide more thrust Larger sunshields can keep more or bigger equipment cold 4

Structures: Massive and Costly

Top 4 Most Massive Subsystems Avg, from SME-SMAD [25] Tbl A-	ms Avg, from SME-SMAD [25] Tbl A-1:	op 4 Most Massive Subsystems Av
--	-------------------------------------	---------------------------------

Subsystem (% of Dry Mass)	No Prop (%)	LEO Prop (%)	High Earth (%)	Planetary (%)
Payload	41%	31%	32%	15%
Struct/Mech	20%	27%	24%	25%
Power	19%	21%	17%	21%
Attitude D&C	8%	6%	6%	6%

Structural components are 2nd largest avg. fraction of spacecraft dry mass - translates to greater launch vehicle costs

Reduction of structural mass is a worthwhile investment applicable to all spacecraft, especially those leaving Earth's orbit

But we still want the performance benefits of large structures!

Electromagnetic forces could support larger structures for less mass...

Superconductors and NIAC

Previous NIAC studies have touched on space applications of superconductors and magnetic fields, including:

Principal Investigator	Subject	
Miller/Sedwick (2002)	Electromagnetic formation flight	
Zubrin (1999)	Magnetically tensioned solar sails ("magsails")	
Hoffman (2004), Westover (2011)	Radiation protection for astronauts B=0 Outside B=0 Inside Crew Compartment Hoffman et al	
PHYSICAL SCALE OF MIC SPACE TELESCOPE COMPARED TO EXISTING AND PLANNED TELESCOPES TO EXISTING AND PLANNED TELESCOPES TO TETHERD SECONDARY/TERTIARY MIRROR AND MAGER TETHERS TO SECONDARY MIRROR MIRROR SURFACE MICUTURE	Conceptual studies of magnetically-expanded high-temperature superconductor (HTS) cables for applications like: • LEO propulsion using Earth's mag. field • Energy storage for lunar bases • Large telescopes w/ perimeter tensioning	

Study Questions

NASA

Can we use electromagnetic forces generated by and acting between high-temperature superconductor (HTS) current-carrying coils to move, unfold, and support parts of a spacecraft from its stowed position?

- 2. For what operations does this technology represent an improvement over existing or in-development options?
- 3. What new mission capabilities does this technology enable?

Vision: Next Next Generation Telescope

Many potential functions and advantages of electromagnets on spacecraft, including:

Wireless power and data transfer

Electromagnetic formation flight and positioning

No obscuration from 2nd mirror assembly

Unfolding from stowed position

Staged deployment and element upgrades/replacement

Magnetic stiffening and tensioning

Reduced # of deployments

Attitude control & momentum trading

Dynamic and thermal isolation

Membrane mirror shaping

Previous Contributions to Vision

Many potential functions and advantages of electromagnets on spacecraft, including:

Wireless power and data transfer

Electromagnetic formation flight and positioning

No obscuration from 2nd mirror assembly

Unfolding from stowed position

Staged deployment and element upgrades/replacement

Magnetic stiffening and tensioning

Reduced # of deployments

Attitude control & momentum trading

Dynamic and thermal isolation

Membrane mirror shaping

Work by:

Fisher, Soljačić (WiTricity) [9], Sedwick (RINGS) [20]

Work by:

Kwon [11,12], Kong [8], Schweighart [18], Miller, Sedwick (EMFF), Sakaguchi (μΕΜFF) [17], Peck (flux pinning) [22], Sedwick (RINGS) [20]

Work by:

Zubrin (Magsail) [26], Powell (MIC Structures) [15], Benford (Microwave spin) [4]

The scope of our study

– deployment-oriented

Work by:

Pedreiro (Disturbance Free Payload) [21]

Work by:

Palisoc (holographic) [13], Ritter (photonic) [16], Bekey (scanning electron/shape memory) [3], Patrick [14], Stamper [23]

Motivation

TECH PUSH

- High-temperature superconductor performance improvements
- Electromagnetic formation flight demonstrated

Many structural functions exist that can be performed magnetically

MISSION PULL

Large flagship spacecraft like JWST need structures that are:

- Light
- Simple
- Large

- Credit: NASA
- Thermally isolated
- Vibration isolated
- Reparable w/out servicing

Electromagnetic Structures and Mechanisms

Study Objectives/Progress

TECHNOLOGY

Define magnetically performable functions & design vector

Develop usable model of coil physics

Design example structures

SYSTEMS

Derive quantitative & qualitative impacts of HTS structures

Discuss architecture trade

Describe emergent capabilities

MiT

Study Objectives/Progress

TECHNOLOGY

Define magnetically performable functions & design vector

Develop usable model of coil physics

Design example structures

- -Type of thermal control
- -Current (A)

HTS

DESIGN

VECTOR

- -AC or DC current?
- -Resistance of circuitry (Ω)
- -Magnetic field strength (G)
- -Deployment time (s)
- -Deployment steps (#)
- -Type of physical constraints
- -Type of HTS
- -Quantity of coils (#)
- -Quantity of turns (#)
- -Length of HTS cable used (m)
- -Size ratio (stowed/deployed)
- -Change in separation (m)

- Involve one or more coils repelling or attracting one another
- Depend upon boundary conditions to differentiate the performed functions
- Design vector identifies design variables that will eventually factor into trades

Study Objectives/Progress

Coil separation

in space w/ time

TECHNOLOGY

Define magnetically performable functions & design vector

Develop usable model of coil physics

Design example structures

- Numerical appx of Biot-Savart Law
- One coil modeled as flexible but non-elastic, with mass
- Two coils modeled with mass, matches far-field analytical sol'n (valid at >10x coil diameter separation)
- Still need to incorporate:
 - Elasticity
 - Bending stiffness

13

Study Objectives/Progress

TECHNOLOGY

Define magnetically performable functions & design vector

Develop usable model of coil physics

Design example structures

Example structures take the defined deployment and support configuration models and apply

constraints (boundary conditions) and *additional mass*

to better simulate actual structure deployment

IIII M

MAC

Study Objectives/Methods

Subsystem or process	Example impacts of HTS structure choice
Avionics/ Comm	Potential electromagnetic interference
Thermal	Additional thermal control required, little or no conduction
ADCS	Current regulation needed, Earth's magnetic field, additional momentum trading possible
Optical Path	Risks to position accuracy and disturbance control
Structures	Reduction of mass, vibration isolation, increased compaction ratio, enables reconfiguration
Propulsion (if EMFF)	No propellant required, eliminates thruster plumes
Power	Additional power draw
Testing	Difficult in 1g

SYSTEMS

Derive quantitative & qualitative impacts of HTS structures

Discuss architecture trade

Describe emergent capabilities

- Selection of HTS structural design impacts every subsystem
- Extent to which (and whether the impact is net positive or net negative) is determined by the priorities of the program
- Overarching HTS effects are:
 - Good for structures
 - Not so good for power and thermal

Mit

Study Objectives/Methods

min(total mass)
min(power req'd)
min(deployment time)
min(thermal mass)
min(mass/length or area)
min(deployment steps)
max(size ratio)
min(current switching)

SYSTEMS

Derive quantitative & qualitative impacts of HTS structures

Discuss architecture trade

Describe emergent capabilities

MISSION PRIORITIES

- Mission destination (LEO/GEO/Lagrange pt?)
- Need for reconfigurability
- Orbital parameters (Sun-sync? Eclipse time?)

Magnetic field

Power/mass ratio 1

Colder

Thermal power draw

Mag. field/mass ratio 1

Less turns in coil

TECHNOLOGY (HTSs VERSUS...)

- Inflatable structures
- Tensegrity structures
- Pyrotechnic fasteners
- Piezoelectric actuators or motors
- Spring-loaded booms and hinges
- Traditional motorized actuation

PERFORMANCE (WITHIN HTSs)

16

Study Objectives/Progress

Emergent capabilities:

Functions that are not feasible or not possible with other technologies

- Deforming/reconfiguring
- Refocusing (future)
- In-space assembly
- Staged deployment

SYSTEMS

Derive quantitative & qualitative impacts of HTS structures

Discuss architecture trade

Describe emergent capabilities

Phase I Timeline

Final Remarks

TECHNOLOGY CURRENT STATUS:

- Mostly functional models of flexible single and double coil unconstrained systems
- Investigating validity of lack of oscillations in model
- *Next step: implementing constraints*

SYSTEMS CURRENT STATUS:

- High-level qualitative impacts and trades described
- More will emerge with quantitative analysis
- Next step: quantify trades with completed coil models

- Current progress consistent with hypothesis of feasibility
 - Breadth of applicability yet to be shown
- HTS structures not only present potential improvements over existing technologies, but enable previously infeasible functions
 - Staged deployment/in-space assembly and repair using EMFF
 - Isolation of sensitive payloads from vibration and heat

Final Remarks

Physically possible?	 Yes, fundamental physics support basic concept
Technologically achievable?	Yes, but how broad will the applications be?EMFF demonstrated
Economically reasonable?	 On par with other expensive and unique mission technology development One goal is to make HTS technology generally applicable to reduce development costs across multiple programs
Desirable compared to other options?	- Planned research contribution

Questions?

I'lii MAC

Referenced Sources

- L. Amboss, K. Lightweight Reflecting Structures Utilizing Magnetic Deployment Forces. Hughes Aircraft Company, assignee. Patent 3605107. 1971.
- 2. Bearden, D.A. "When is a Satellite Mission Too Fast and Too Cheap?" MAPLD International Conference, 11 Sept. 2001.
- 3. Bekey, I. "An Extremely Large Yet Ultralightweight Space Telescope And Array Feasibility Assessment Of A New Concept," NIAC Phase I Report, 1999.
- 4. Benford, G. "Sail deployment by microwave beam—experiments and simulations," Space Technology And Applications International Forum 14 Jan. 2002: 447-51.
- 5. Billings, L. "The Telescope That Ate Astronomy," Nature 467, 1028–1030; 2010.
- 6. Inamdar, N. "Analytical Solution for Ring Dynamics in the 'Far Field'," 2012.
- 7. Kaplan, M. "Linking JWST and human spaceflight," The Space Review, 17 Oct. 2011.
- 8. Kong, E. "Spacecraft Formation Flight Exploiting Potential Fields," PhD dissertation, Massachusetts Institute of Technology, 2002.
- 9. Kurs, A., Soljacic, M., and Fisher, P. "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science 317:83, 2007.
- 10. Kwok, K. and S. Pellegrino. "Shape Recovery of Viscoelastic Deployable Structures." 2010. California Institute of Technology, Space Structures Lab.
- 11. Kwon, D. "Electromagnetic Formation Flight of Satellite Arrays," MS thesis, Massachusetts Institute of Technology, 2005.
- 12. Kwon, D. "Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to Electromagnetic Formation Flight Satellites," PhD dissertation, Massachusetts Institute of Technology, 2009.
- 13. Palisoc, A.L., et al. "Large Telescope Using a Holographically-Corrected Membrane Mirror," NIAC Phase I Report, 2000.
- 14. Patrick, B.G., et al. "Manufacturing and evaluation of membrane optical elements for ultralightweight optics," Optical Manufacturing and Testing IV, Proceedings of SPIE Vol. 4451, 2001.
- 15. Powell, J., et al. "Magnetically Inflated Cable (MIC) System for Large Scale Space Structures," Plus Ultra Technologies, NIAC Phase I Report, 2006.
- 16. Ritter, J. "Large Ultra-Lightweight Photonic Muscle Telescope," University of Hawaii Institute for Astronomy, 2011
- 17. Sakaguchi, A. "Micro-Electromagnetic Formation Flight of Satellite Systems," MS thesis, Massachusetts Institute of Technology, 2007.
- 18. Schweighart, S. "Electromagnetic Formation Flight Dipole Solution Planning," PhD dissertation, Massachusetts Institute of Technology, 2005.
- 19. Sedwick, R. "Coordinatization of Ideal Magnetic Dipole-Dipole Interaction," 2002.
- 20. Sedwick, R. "Resonant Inductive Near-field Generation System (RINGS)," DARPA Proposal BAA-10-44, University of Maryland Space Systems Lab, 2010.
- 21. Shao, M., Pedreiro, N., et al. "New Sciencecraft and Test Mass Concepts for the LISA Mission," NASA RFI Response, 2011
- 22. Shoer, J.P. and Peck, M.A. "Flux-Pinned Interfaces for the Assembly, Manipulation, and Reconfiguration of Modular Space Systems," The Journal of the Astronautical Sciences, Vol. 57, No. 3, July—September 2009, pp. 667–688
- 23. Stamper, B., et al. "Flat Membrane Mirrors for Space Telescopes," University of Arizona Optical Sciences Center, 2000.
- 24. "Superconducting Magnet Set World Record." World Records Academy. 8 Aug. 2007. Web.
- 25. Wertz, J. "Space Mission Engineering: The New SMAD," Microcosm Press, 2011.
- 26. Zubrin, Robert. "NIAC Study of the Magnetic Sail," 8 Nov. 1999. Pioneer Astronautics.